Announcements

1) How \#4 due Tuesday next week

Recall: $\mathcal{L}\left(f^{\prime}\right)(s)$

$$
=s \mathcal{L}(f)(s)-f(0)
$$

provided $\lim _{x \rightarrow \infty} \frac{f(x)}{e^{x s}}=0$!
For which functions f is this true?

Exponential Order
(Big O of an exponential function) A function f is of exponential order α if $\exists M>0$ and $T \in \mathbb{R}$ (most of the time, $T \geq 0$) such that

$$
|f(t)| \leq M e^{\alpha t}
$$

for all $t \geq T$ (f is $O\left(e^{\alpha t}\right)$)

If f is of exponential order S,

$$
\left|\frac{f(x)}{e^{s x}}\right| \leq \frac{M e^{s x}}{e^{s x}}=M
$$

for all $x \geq T$
If f is of exponential order S^{-1},

$$
\begin{aligned}
\left|\frac{f(x)}{e^{s x}}\right| \leq & \frac{M e^{(s-1) x}}{e^{s x}}=\frac{M}{e^{x}} \\
& \rightarrow 0 \text { as } x \rightarrow \infty
\end{aligned}
$$

In general, if f is of exponential order α where $\alpha<S$,

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{e^{5 x}}=0
$$

so the formula for $\mathcal{L}\left(f^{\prime}\right)$ holds for all such function:
includes any polynomial, any bounded function $(\sin (x), \cos (x), \arctan (x), \operatorname{etc})$, logarithms, rational functions,

Back to Brine Problem

$$
\begin{aligned}
& \frac{d x}{d t}=6 h(t)-\frac{3 x(t)}{500} \\
& h(t)=\left\{\begin{array}{l}
2,0 \leq t<10 \\
.4, \\
.2 \geq 10
\end{array}\right.
\end{aligned}
$$

Apply Laplace transform to both sides:

$$
\mathcal{L}\left(\frac{d x}{d t}\right)(s)=\mathcal{L}\left(6 h(t)-\frac{3 x(t)}{500}\right)(s)
$$

Using linearity of the Laplace transform, the right-hand side of the equality becomes

$$
6 \mathcal{L}(h(t))(s)-\frac{3}{500} \mathcal{L}(x(t))(s)
$$

drop the t 's to get

$$
6 \mathcal{L}(h)(s)-\frac{3}{500} \mathcal{L}(x)(s)
$$

On the left -hand side of the equality, use the derivative rule.

$$
\mathcal{L}\left(x^{\prime}\right)(s)=s \mathcal{L}(x)(s)-x(0)
$$

$X(0)=$ amount of salt in the tank when $t=0$,

$$
\begin{gathered}
=30 \mathrm{~kg} \text {, so } \\
\mathcal{F}\left(x^{\prime}\right)(s)=5 \mathcal{F}(x)(s)-30
\end{gathered}
$$

Equating both sides,

$$
\begin{aligned}
& S \mathcal{L}(x)(s)-30 \\
& =6 \mathcal{L}(h)(s)-\frac{3 \mathcal{L}(x)(s)}{500}
\end{aligned}
$$

Solve for $\mathcal{L}(x)(s)$

$$
\begin{aligned}
& s \mathscr{L}(x)(s)+\frac{3 \mathscr{L}(x)(s)}{500}=6 \mathcal{L}(h)(s)+30 \\
& (500 s+3) \mathcal{L}(x)(s) \\
& =3000 \mathscr{L}(h)(s)+15,000
\end{aligned}
$$

Divide by 500st3

$$
\mathcal{L}(x)(s)=\frac{3,000 \mathcal{L}(h)(s)+15,000}{500 s+3}
$$

Need to compute

$$
\begin{aligned}
\mathcal{L}(h)(s) & =\int_{0}^{\infty} h(t) e^{-s t} d t \\
& =\int_{0}^{10} \cdot 2 e^{-s t} d t \\
& +\int_{10}^{\infty} \cdot 4 e^{-s t} d t
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{10} \cdot 2 e^{-s t} d t \\
= & \left.\frac{.2 e^{-s t}}{-s}\right|_{0} ^{10}=\frac{.2 e^{-10 s}}{-s}+\frac{.2}{s} \\
\int_{10}^{\infty} \cdot 4 e^{-s t} d t & =.4 \lim _{x \rightarrow \infty} \int_{10}^{x} e^{-s t} d t \\
= & \left.4 \lim _{x \rightarrow \infty} \frac{e^{-s t}}{-s}\right|_{10} ^{x} \\
= & 4 \lim _{x \rightarrow \infty}\left(\frac{e^{-10 s}}{s}-\frac{e^{-s x}}{s}\right)
\end{aligned}
$$

If $s>0$,

$$
\lim _{x \rightarrow \infty} \frac{e^{-s x}}{s}=0 \text { and }
$$

if $S \leq 0$, the Laplace transform does not exist. So we have

$$
\begin{aligned}
f(h)(s) & =\frac{.2}{s}\left(1-e^{-10 s}+2 e^{-10 s}\right) \\
& =\frac{.2}{s}\left(1+e^{-105}\right)
\end{aligned}
$$

Putting all this together,

$$
\begin{aligned}
& \mathcal{L}(x)(s)= \\
& \frac{3000\left(\frac{.2}{s}\left(1+e^{-10 s}\right)\right)+15000}{500 s+3} \\
& =\frac{600}{s(500 s+3)}+\frac{600 e^{-10 s}}{s(500 s+3)}+\frac{15000}{500 s+3}
\end{aligned}
$$

$S>0$, so this function is continuous!

We can separate a bit using partial fractions:

$$
\begin{aligned}
& \frac{1}{s(500 s+3)}=\frac{A}{s}+\frac{B}{500 s+3} \\
& 1=A(500 s+3)+B s \\
& \underline{S=0} \quad \frac{s=-\frac{3}{500}}{1=3 A} \quad 1=\frac{-3}{500} B \\
& A=1 / 3
\end{aligned} \quad B=\frac{-500}{3} .
$$

Rewrite using partial fractions:

$$
\begin{aligned}
& \mathcal{L}(x)(s)= \\
& 600\left(\frac{1}{35}-\frac{500}{3(500 s+3)}\right)+ \\
& 600\left(\frac{e^{-10 s}}{3 s}-\frac{500 e^{-10 s}}{3(500 s+3)}\right) \\
& +\frac{15000}{500 s+3}
\end{aligned}
$$

How do we get back to $x(t)$?

Inverse Laplace Transforms

$$
(\text { Section } 7.4)
$$

A way back to your original function from its Laplace Transform!

Observation: The Laplace
Transform, restricted to functions of exponential order that are continuous is one-to-one (up to a set of Lebesgue measure zero)

There will be an inverse for the transform!

