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For which functions f is

this true ?



Exponential Order

.

( Big 0 of an exponential function )

A function f is of exponential

order d if F M >0 and
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If f is of exponential

Order
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If f is of exponential
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In general ,
if f is

of exponential order

2 where 4 < S
,

dgof¥#
So the formula for LCF

'

)

holds for all such functions :

includes any polynomial ,

any bounded function

( sin 1×1 ,
Coscxl

,
arctana . )

,

etc )
,

logarithms ,
rational

functions ,
.

.
.



Back to Brine Problem
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Apply Laplace transform

to both sides ;

THE )cs)=L( cents -32¥ ) 's )



Using linearity of the Laplace

transform , the right - hand

side of the equality becomes

6L( hulks )y3zLCxHks
)

drop the t 's to get

6L ( HIS ) - jto LCH ( s )
.



On the left - hand side of the

equality ,
use the derivative

rule .

LCXKS )=SL( xks) - do )

×( o ) = amount of salt in the

tank when t= O ,

= 30 kg ,
So

LK
'

)H=SL( xlls ) -30 .



Equating both sides ,
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Solve for L ( xks ) :
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Divide by 5005+3
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If S >

% X

tin Is = 0 and
× a

If SEO , the Laplace transform

does not exist .

So we have

LCHG )=tg( I - d0F2et0s )

= .§(lt€



Putting all this together ,

L(×):
00 ( state
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,

so this function

is continuous !



We can separate a bit

using partial fractions :

⇐ostz )
=¥t 135005+3

1 = A (508+3)+13 s
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s=I÷-3A I = Too B

A=Ys D= -5¥



Rewrite using partial fractions :

Y!ol¥¥¥÷I÷¥.#
+ 15000509+3

How do we get back to XCH ?



InverseLaplace
Transforms

.

( Section 7.4 )

A way back to your original

function from its Laplace

Transform !



Observation : The Laplace

Transform ,
restricted to

functions of exponential

order that are continuous

is one - to - one ( up

to a set of Lebesgue

measure zero )

There will be an inverse

for the transform !


